Scientists have now observed for the first time how diamonds grow from seed at an atomic level, and discovered just how big the seeds need to be to kick the crystal growing process into overdrive. The researchers engineered diamond strings that can be tuned to quiet a qubit's environment and improve memory from tens to several hundred nanoseconds, enough time to do many operations on a quantum chip. Intel has announced the design and fabrication of a 49-qubit superconducting quantumprocessor chip at the Consumer Electronics Show in Las Vegas. To improve our understanding of the so-called quantum properties of materials, scientists at the TU Delft investigated thin slices of SrIrO3, a material that belongs to the family of complex oxides.
New research carried out by CQT researchers suggest that standard protocols that measure the dimensions of quantum systems may return incorrect numbers. Is entanglement really necessary for describing the physical world, or is it possible to have some post-quantum theory without entanglement? A trio of scientists who defied Einstein by proving the nonlocal nature of quantum entanglement will be honoured with the John Stewart Bell Prize from the University of Toronto (U of T).
While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported.
On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information