You are viewing a single comment's thread from:

RE: Discussing my own research - hunting for flavorful new phenomena at the Large Hadron Collider

in #steemstem6 years ago (edited)

I think it is about how new physics models (like those incorporating supersymmetry) can explain some observations in the universe but are still not complete until they are verifiable through experiments. The Standard Model as it stands explains a lot (very precisely) but seems to be missing a piece. If we are to get a theory of everything, it needs to explain gravity, dark matter, electromagnetism, quantum mechanics, and everything else. Much like how Newton's theory of gravity works for many things, it still needed to be modified by relativity to explain things. The same need seems to be happening with the standard model of particle physics

Sort:  

I am feeling uncomfortable with a few of the terms you employed. More precisely, the fact a model is complete has nothing to do with the fact it is observed or not. Many complete models are still waiting for an experimental confirmation (and they are kind of incompatible with each other). The word 'complete' has here a very well-defined meaning (in the context of model building).

Now on a more personal basis, I believe we don't necessarily need to get to the theory of everything in one step (there re conceptual issues there, in particular in the way gravity could be incorporated). We could aim to something extending the Standard Model at high energy, and then something extending the extension at much larger energy (and so on).

That actually makes a lot of sense thanks!