That I understood. I think my question was from much more naive thinking. I think I should read a bit more on how particle detectors work. What I was wondering is about what if we are seeing them because we mistake them for normal particles. Like on the two axes in the above figure, there are two properties that can be measured by LUX, right. I am assuming these properties may depend upon how particle interacts with say EM field in the detector, it's trajectory, charge, mass and those things. Now if we assume mirror electron had same charge and mass as normal electron but only difference being that it interact just with mirror EM force. So is there a chance that if we do see a mirror electron once in a while we may mistake it as normal electron. But again my thinking is based on zero knowledge about the particle detection and I am just thinking in wrong direction. 😁
Posted using Partiko Android
This is part of the background, indeed. I recall that the background expectation is the observed distribution (there is no signal).
In the case of a signal, we should observe a global difference in the distribution of the datapoint. We should get the background (the data points, I recall) plus what we can get from the solid contours. In other words, we have enough discriminating power.
I think that now I answer the question (otherwise, please come back again to me :D )