You are viewing a single comment's thread from:

RE: The universe with its constants gives us physics, stars give us chemistry and planets give us biology

in #stars7 years ago

Hi brother @gavvet
I hope you enjoyed the end of the year
It is also a happy year for you and for all the family
We hope to get some support from you brother at the beginning of the year


For more than 400 years, physicists treated the universe like a machine, taking it apart to see how it ticks. The surprise is it turns out to have remarkably few parts: just leptons and quarks and four fundamental forces to glue them together.
But those few parts are exquisitely machined. If we tinker with their settings, even slightly, the universe as we know it would cease to exist. Science now faces the question of why the universe appears to have been “fine-tuned” to allow the appearance of complex life, a question that has some potentially uncomfortable answers.
The deeper we look at the universe, the simpler it appears to be. We know that everyday matter is built from about 100 different atoms. They, in turn, are composed of a dense nucleus of close-packed protons and neutrons, surrounded by a buzzing cloud of electrons.
Peering deeper, we find that protons and neutrons are themselves made of quarks – of which there are six distinct types. But two dominate the universe: the up-quark and the down-quark. There are also six leptons of which the electron is the most famous.
The four fundamental forces glue matter together. Two of them, the strong and the weak force, only inhabit the sub-atomic world. Everyday life is dominated by the electro-magnetic force and gravity.
Recommended
These building blocks of the universe come with tight specifications and they never vary. Wherever you are in the universe, the mass of the electron, the speed of light (light is an electromagnetic wave), and the strength of the gravitational force is the same. In physics, we encounter these so-called fundamental constants so often, we barely give them a second thought. We just plug them into our equations and calculate the properties of matter and energy to our heart’s content.
As a cosmologist, I can use these immutable laws of physics to evolve synthetic universes on supercomputers, watching matter flow in the clutches of gravity, pooling into galaxies, and forming stars. Simulations such as these allow me to test ideas about the universe – particularly to try to understand the mystery of dark energy (more on this later).
This plug-and-play approach to science has also given us a masterful ability to operate in our real universe. We blasted the Rosetta spacecraft 510 million kilometres into the solar system with such pinpoint precision it could land its probe on a three-kilometre-wide speeding asteroid. We’ve designed an instrument so sensitive it could detect the gravitational waves reverberating from two black holes that collided 1.3 billion years ago. Every aspect of our modern technological world is underpinned by plug-and-play science.