G89001

in #mse β€’ 6 years ago

A.logπ‘₯ B.1 C.0 D.12logπ‘₯ E.2

  1. Solve the inequality xlog100.1>log1010.
    A. x<-1 B. x<1 C. x>1 D. x>100 E. x>-1
  2. If log𝑝+π‘ž= logπ‘βˆ’logπ‘ž , then p=……….
    A. p=q=1 B. p=π‘ž1βˆ’π‘ž C. p=π‘ž21βˆ’π‘ž D. p= π‘ž1+π‘ž E. p=π‘ž21+π‘ž
    25.If logπ‘Ž=5, log𝑏 =3, then the value of π‘Žπ‘ is
    A. 53 B. 2 C. 8 D. log53 E.100
  3. Given that logπ‘Ž2 =0.301 and logπ‘Ž3 =0.477, then =……..
    A. 0.125 B. -0.125 C. 0.301 D. -1.125 E. 1.125
  4. If 2log𝑝8βˆ’log𝑝4=2, then p=……….
    A. 4 B. -4 C. 4 (or) 2 D. 4 (or) -4 E. 2
  5. log19π‘₯βˆ’1π‘₯+2 = 12; x=………
    A. 12 B. 32 C. 52 D. 72 E. 92
  6. log39π‘₯βˆ’22= x+2 ; x=…………
    A. log113 B. log311 C.log3 D.log11 E. 0
    30.If log2=m, log3=n, then log720 =……….
    A. m+n+1 B. 3m+n+1 C. 2m+3n+1 D. 3m+2n+1 E. 3m+2n-1
  7. log29 =a , log26=………..
    A. 1π‘Ž+2 B.π‘Ž+22 C. -a D. a+12 E. 2a
  8. log0.040.4=…….
    A. -3 B. -2 C. -1 D. 1 E.4
  9. log55+log31+log416=…….
    A. 0 B. 1 C. 2 D. 3 E.4
  10. If log2.7 =0.431 , then log2.7 =………
    A.1 .431 B.-0.215 C.0.2155 D. 0.8