아마 샘플링의 문제가 아닐까 싶기도 합니다. (공교롭게도 @sampling 님의 아이디가 눈에 띠는 군요! 신기합니다.) 사실 그러한 편향을 없애기 위해 많은 노력을 합니다. Cross validation도 그러한 일환이겠지요.
그럼에도 불구하고, 우리가 다루는 데이터의 클래스들이 항상 균일한 분포 (혹은 크기)를 가지는 것은 아니기에, 불균형된 데이터를 다루는 상황이 발생하기도 합니다.
우리가 찾고자하는 모델이, 파라미터 공간 안에서 항상 convex를 가정할 수는 없기에, local minimum에 다가가다보면, 결국 그 안에서 빠져버리는 것 같습니다. 아마 이 이야기를 해주신 것 같다는 느낌이 드는데요, 이 부분을 해결하는 것은 참 어렵다는 생각입니다.
아마 샘플링의 문제가 아닐까 싶기도 합니다. (공교롭게도 @sampling 님의 아이디가 눈에 띠는 군요! 신기합니다.) 사실 그러한 편향을 없애기 위해 많은 노력을 합니다. Cross validation도 그러한 일환이겠지요.
그럼에도 불구하고, 우리가 다루는 데이터의 클래스들이 항상 균일한 분포 (혹은 크기)를 가지는 것은 아니기에, 불균형된 데이터를 다루는 상황이 발생하기도 합니다.
우리가 찾고자하는 모델이, 파라미터 공간 안에서 항상 convex를 가정할 수는 없기에, local minimum에 다가가다보면, 결국 그 안에서 빠져버리는 것 같습니다. 아마 이 이야기를 해주신 것 같다는 느낌이 드는데요, 이 부분을 해결하는 것은 참 어렵다는 생각입니다.