Training & Test data
지금까지 우리는 우리 손에 가지고 있는 x_data
와 y_data
를 모두 사용해서 학습을 진행했다. 하지만 실제로 학습을 진행할 때 이런 방법은 독약과 같다. Overfitting
, 즉 샘플 데이터에 너무나 최적화된 학습을 진행할 위험이 발생하기 때문이다. 우리 손에 가지고 있는 데이터에는 너무나도 잘 맞아떨어지지만, 새로운 임의의 데이터를 가지고 예측을 시도할 때 엉뚱한 값이 도출될 수 있다. 완벽하게 틀리는 것보다 대략적으로 맞는 것이 낫다
Overfitting
문제를 해결하기 위해 우리는 손에 들고 있는 모든 데이터를 모두 한 번에 학습시키지 않는다. x_data
중 일부를 train_data
와 test_data
로 나누어 우리가 가지고 있는 데이터로 우리가 가지고 있는 결과값을 예측해 그 정확도를 높여가는 방법을 사용한다.
x_data = [[1, 2, 1], [1, 3, 2], [1, 3, 4], [1, 5, 5], [1, 7, 5], [1, 2, 5], [1, 6, 6], [1, 7, 7]]
y_data = [[0, 0, 1], [0, 0, 1], [0, 0, 1],[0, 1, 0], [0, 1, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0]]
# Evaluation our model using this test dataset
x_test = [[2, 1, 1], [3, 1, 2], [3, 3, 4]]
y_test = [[0, 0, 1], [0, 0, 1], [0, 0, 1]]
이렇게 X
와 Y
모두 train_data
와 test_data
로 나눠볼 수 있다. x_data
와 y_data
를 학습시킨 후, x_test
로 y_test
를 예측할 것이다.
import tensorflow as tf
X = tf.placeholder('float', [None, 3])
Y = tf.placeholder('float', [None, 3])
W = tf.Variable(tf.random_normal([3, 3]))
b = tf.Variable(tf.random_normal([3]))
hypothesis = tf.nn.softmax(tf.matmul(X, W) + b)
cost = tf.reduce_mean(-tf.reduce_sum(Y * tf.log(hypothesis), axis = 1))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(cost)
# Correct prediction Test model
prediction = tf.argmax(hypothesis, 1)
is_correct = tf.equal(prediction, tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(is_correct, tf.float32))
그동안 우리가 배워온 내용을 그대로 옮겼다. 한정된 숫자의 결과물을 예측하는 학습이기 때문에 softmax classifier
를 사용하고 예측값과 실제 결과값이 얼마나 일치하는지 accuracy
도 계산한다.
# Launch graph
with tf.Session() as sess:
# Initialize TensorFlow variables
sess.run(tf.global_variables_initializer())
for step in range(201):
cost_val, W_val, _ = sess.run([cost, W, optimizer], feed_dict={X: x_data, Y: y_data})
if step % 50 == 0:
print(step, cost_val, W_val)
# predict
print('Prediction: ', sess.run(prediction, feed_dict={X: x_test}))
#Calculate the accuracy
print('Accuracy: ', sess.run(accuracy, feed_dict={X: x_test, Y: y_test}))
마찬가지로 그동안 우리가 새로운 데이터를 받아 예측값을 도출해냈던 과정과 같다. 다만 이제는 새로운 데이터가 아니라 우리 손에 가지고 있었던 x_test
를 feed_dict
에 넣어 결과값과 비교할 것이다.
0 8.988228 [[ 0.11208847 0.47554475 0.1975143 ]
[-1.1675632 1.5306576 0.5912204 ]
[ 0.09794842 0.1834646 -1.4173911 ]]
50 0.67657614 [[-0.14361657 0.31683704 0.6119269 ]
[ 0.18957865 0.28083315 0.4839031 ]
[ 0.20006129 -0.22995412 -1.106085 ]]
100 0.6029661 [[-0.38646892 0.28959692 0.8820194 ]
[ 0.38143796 0.252741 0.32013616]
[ 0.1023661 -0.18497579 -1.0533681 ]]
150 0.56602275 [[-0.584517 0.27159134 1.098073 ]
[ 0.43722993 0.27073687 0.24634846]
[ 0.12417976 -0.18668653 -1.0734707 ]]
200 0.5386059 [[-0.76213515 0.2664096 1.2808731 ]
[ 0.45737296 0.2853071 0.21163537]
[ 0.1737314 -0.19095026 -1.1187582 ]]
Prediction: [2 2 2]
Accuracy: 1.0
결과적으로 accuracy
가 1.0
으로 완벽하게 맞아떨어졌다. 우리 데이터 중 일부만 가지고서도 효과적인 학습이 이루어졌다는 의미다.
Learning Rate
앞서 배웠던 수식 중 위 그림에서 표현되는 α
가 learning_rate
을 의미함을 배웠다. 거의 대부분의 상황에서 양 극단은 좋지 않은 결과를 가져온다. learning_rate
역시 마찬가지다.
왼쪽 그림은 learning_rate
가 너무 큰 값을 경우 발생하는 overshooting
을 표현한 그림이다. cost
의 최저 지점을 찾아기기 위해 학습을 진행하려하지만 learning_rate
가 너무 큰 바람에 그래프를 이리저리 튕겨다니다가 결국 그래프 밖으로 나가버린다.
반대로 오른쪽 그림은 learning_rate
가 너무 낮은 경우다. local minumum
이라고 부르는 계곡에 갇혀버렸다. 이곳이 정말 모든 cost
의 최저점인줄 알고 학습을 멈출 수 있는 위험이 발생한 상황이다. 이렇듯 learning_rate
는 너무 높거나 낮은 경우 모두 학습에 문제를 발생시킨다.
X = tf.placeholder('float', [None, 3])
Y = tf.placeholder('float', [None, 3])
W = tf.Variable(tf.random_normal([3, 3]))
b = tf.Variable(tf.random_normal([3]))
hypothesis = tf.nn.softmax(tf.matmul(X, W) + b)
cost = tf.reduce_mean(-tf.reduce_sum(Y * tf.log(hypothesis), axis = 1))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.5).minimize(cost)
# Correct prediction Test model
prediction = tf.argmax(hypothesis, 1)
is_correct = tf.equal(prediction, tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(is_correct, tf.float32))
# Launch graph
with tf.Session() as sess:
# Initialize TensorFlow variables
sess.run(tf.global_variables_initializer())
for step in range(201):
cost_val, W_val, _ = sess.run([cost, W, optimizer], feed_dict={X: x_data, Y: y_data})
if step % 50 == 0:
print(step, cost_val, W_val)
# predict
print('Prediction: ', sess.run(prediction, feed_dict={X: x_test}))
#Calculate the accuracy
print('Accuracy: ', sess.run(accuracy, feed_dict={X: x_test, Y: y_test}))
위 코드는 learning_rate = 1.5
인 경우다. 너무 높은 수치가 도입될 경우 어떤 문제가 발생하는지 알아보자.
0 8.564701 [[ 0.00467372 -1.7712536 0.44246456]
[ 0.5064486 -2.9807346 1.3701193 ]
[ 0.64034474 -1.9685894 0.32826614]]
50 nan [[nan nan nan]
[nan nan nan]
[nan nan nan]]
100 nan [[nan nan nan]
[nan nan nan]
[nan nan nan]]
150 nan [[nan nan nan]
[nan nan nan]
[nan nan nan]]
200 nan [[nan nan nan]
[nan nan nan]
[nan nan nan]]
Prediction: [0 0 0]
Accuracy: 0.0
아예 NaN
값으로 표시되며 학습을 전혀 진행하지 못한다. 학습을 하다가 그래프 밖으로 튕겨져 나갔기 때문이다. 반대로 learning_rate
가 낮은 경우도 살펴보자.
X = tf.placeholder('float', [None, 3])
Y = tf.placeholder('float', [None, 3])
W = tf.Variable(tf.random_normal([3, 3]))
b = tf.Variable(tf.random_normal([3]))
hypothesis = tf.nn.softmax(tf.matmul(X, W) + b)
cost = tf.reduce_mean(-tf.reduce_sum(Y * tf.log(hypothesis), axis = 1))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=1e-10).minimize(cost)
# Correct prediction Test model
prediction = tf.argmax(hypothesis, 1)
is_correct = tf.equal(prediction, tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(is_correct, tf.float32))
# Launch graph
with tf.Session() as sess:
# Initialize TensorFlow variables
sess.run(tf.global_variables_initializer())
for step in range(201):
cost_val, W_val, _ = sess.run([cost, W, optimizer], feed_dict={X: x_data, Y: y_data})
if step % 50 == 0:
print(step, cost_val, W_val)
# predict
print('Prediction: ', sess.run(prediction, feed_dict={X: x_test}))
#Calculate the accuracy
print('Accuracy: ', sess.run(accuracy, feed_dict={X: x_test, Y: y_test}))
learning_rate=1e-10
이라는 작은 수를 넣은 것 빼고는 모두다 같은 코드다. 결과는 아래와 같다.
0 14.259041 [[-0.2004612 -0.09101935 -1.281261 ]
[ 1.9522957 -2.5888934 1.4537743 ]
[ 0.5717957 -1.5132546 1.8434129 ]]
50 14.259041 [[-0.2004612 -0.09101935 -1.281261 ]
[ 1.9522957 -2.5888934 1.4537743 ]
[ 0.5717957 -1.5132546 1.8434129 ]]
100 14.259041 [[-0.2004612 -0.09101935 -1.281261 ]
[ 1.9522957 -2.5888934 1.4537743 ]
[ 0.5717957 -1.5132546 1.8434129 ]]
150 14.259041 [[-0.2004612 -0.09101935 -1.281261 ]
[ 1.9522957 -2.5888934 1.4537743 ]
[ 0.5717957 -1.5132546 1.8434129 ]]
200 14.259041 [[-0.2004612 -0.09101935 -1.281261 ]
[ 1.9522957 -2.5888934 1.4537743 ]
[ 0.5717957 -1.5132546 1.8434129 ]]
Prediction: [0 0 2]
Accuracy: 0.33333334
accuracy
가 0.3333
으로 낮은 것을 확인할 수 있다. 너무 학습 진도가 느려서 200 번의 회차 안에 cost
의 최저점에 도달하지 못했거나 local minimum
에 도달해 학습을 멈춰버린 결과일 수 있다. cost
수치가 14.259041
이라는 특정 수치에 머물러 있는 것을 보면 후자의 경우라고 추측해볼 수 있다.
Non-normalized Input
import numpy as np
xy = np.array([[828.659973, 833.450012, 908100, 828.349976, 831.659973],
[823.02002, 828.070007, 1828100, 821.655029, 828.070007],
[819.929993, 824.400024, 1438100, 818.97998, 824.159973],
[816, 820.958984, 1008100, 815.48999, 819.23999],
[819.359985, 823, 1188100, 818.469971, 818.97998],
[819, 823, 1198100, 816, 820.450012],
[811.700012, 815.25, 1098100, 809.780029, 813.669983],
[809.51001, 816.659973, 1398100, 804.539978, 809.559998]])
위와 같이 복잡한 숫자를 다뤄야 할 경우가 있다. 하지만 TensorFlow
로 학습을 시키면 학습이 잘 이뤄지지 않는다. 그림으로 살펴보자.
현재 가장 왼쪽에 있는 그림이 위 데이터를 나타난 그래프다. 이런 상태 그래도 학습을 진행하면 학습을 하다가 learning_rate
이 클 경우와 비슷하게 그래프 밖으로 튕겨져 나가버린다. 데이터의 형태가 일정하지 않기 때문이다. 이를 위해 우리는 가장 오른쪽의 그림으로 데이터를 변형시켜줘야 한다. 이를 nomalization
즉, 정규화
라고 한다.
x_data = xy[:, 0:-1]
y_data = xy[: ,[-1]]
# Placeholders for a tensor that will be always fed
X = tf.placeholder(tf.float32, shape=[None, 4])
Y = tf.placeholder(tf.float32, shape=[None, 1])
W = tf.Variable(tf.random_normal([4, 1]), name='weight')
b = tf.Variable(tf.random_normal([1]), name='bias')
hypothesis = tf.matmul(X, W) + b
cost = tf.reduce_mean(tf.square(hypothesis - Y))
# Minimize
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1)
train = optimizer.minimize(cost)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for step in range(2001):
cost_val, hy_val, _ = sess.run([cost, hypothesis, train], feed_dict={X: x_data, Y: y_data})
if step%500 == 0:
print(step, 'Cost: ', cost_val, '\nPrediction:\n', hy_val)
먼저 정규화 과정 이전의 데이터 그대로 학습을 진행해보자. 지금껏 우리가 배운 내용 그대로의 linear regression
코드다.
0 Cost: 5284707300.0
Prediction:
[[ -50129.914]
[-102780.71 ]
[ -80473.99 ]
[ -55879.113]
[ -66172.24 ]
[ -66744.15 ]
[ -61039.453]
[ -78203.71 ]]
...
2000 Cost: nan
Prediction:
[[nan]
[nan]
[nan]
[nan]
[nan]
[nan]
[nan]
[nan]]
역시나 우리의 예상대로 NaN
값이 나오면서 학습이 이루어지지 않았다. 그래프 밖으로 학습 곡선이 튕겨져 나갔기 때문이다. 이제 Normalization
을 해보자.
def MinMaxScaler(data):
numerator = data - np.min(data, 0)
denominator = np.max(data, 0) - np.min(data, 0)
# noise term prevents the zero division
return numerator / (denominator + 1e-7)
xy = MinMaxScaler(xy)
print(xy)
Normalization
을 해주는 MinMaxScaler
함수를 만들어 xy
에 적용한다.
[[0.99999999 0.99999999 0. 1. 1. ]
[0.70548491 0.70439552 1. 0.71881782 0.83755791]
[0.54412549 0.50274824 0.57608696 0.606468 0.6606331 ]
[0.33890353 0.31368023 0.10869565 0.45989134 0.43800918]
[0.51436 0.42582389 0.30434783 0.58504805 0.42624401]
[0.49556179 0.42582389 0.31521739 0.48131134 0.49276137]
[0.11436064 0. 0.20652174 0.22007776 0.18597238]
[0. 0.07747099 0.5326087 0. 0. ]]
앞서 여러 복잡한 숫자로 이뤄진 데이터 값들이 0 ~ 1
까지의 값으로 정리되었다. 이제 학습을 진행할 수 있는 상태가 된 것이다.
x_data = xy[:, 0:-1]
y_data = xy[: ,[-1]]
# Placeholders for a tensor that will be always fed
X = tf.placeholder(tf.float32, shape=[None, 4])
Y = tf.placeholder(tf.float32, shape=[None, 1])
W = tf.Variable(tf.random_normal([4, 1]), name='weight')
b = tf.Variable(tf.random_normal([1]), name='bias')
hypothesis = tf.matmul(X, W) + b
cost = tf.reduce_mean(tf.square(hypothesis - Y))
# Minimize
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1)
train = optimizer.minimize(cost)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for step in range(2001):
cost_val, hy_val, _ = sess.run([cost, hypothesis, train], feed_dict={X: x_data, Y: y_data})
if step%500 == 0:
print(step, 'Cost: ', cost_val, '\nPrediction:\n', hy_val)
다시 linear regression
코드를 돌려보면,
0 Cost: 0.231175
Prediction:
[[0.20675151]
[0.07358359]
[0.0928963 ]
[0.08791228]
[0.13289304]
[0.18657236]
[0.11113021]
[0.07873628]]
500 Cost: 0.0050764065
Prediction:
[[1.0107089 ]
[0.80649084]
[0.59782326]
[0.3328081 ]
[0.5462328 ]
[0.55248463]
[0.1339626 ]
[0.06204735]]
1000 Cost: 0.0046706144
Prediction:
[[1.0036284 ]
[0.8089594 ]
[0.6028423 ]
[0.33763686]
[0.5518892 ]
[0.54710376]
[0.14128152]
[0.04881008]]
1500 Cost: 0.0044109067
Prediction:
[[0.9986937 ]
[0.810721 ]
[0.6065419 ]
[0.34182253]
[0.5557763 ]
[0.5424629 ]
[0.14631456]
[0.03957276]]
2000 Cost: 0.004228479
Prediction:
[[0.9952446 ]
[0.8120657 ]
[0.60932547]
[0.34547907]
[0.55840313]
[0.5383644 ]
[0.14969271]
[0.03315411]]
cost
가 줄어들며 학습이 잘 진행되고 있는 것을 확인할 수 있다. 큰 범위의 데이터 학습을 진행할 경우 정규화
과정을 거쳐야 학습이 진행될 수 있다.
Congratulations @beseeyong! You have completed some achievement on Steemit and have been rewarded with new badge(s) :
Award for the number of upvotes
Click on any badge to view your own Board of Honor on SteemitBoard.
To support your work, I also upvoted your post!
For more information about SteemitBoard, click here
If you no longer want to receive notifications, reply to this comment with the word
STOP
5월 다시 파이팅해요!
호출에 감사드립니다!
pairplay 가 kr-dev 컨텐츠를 응원합니다! :)