07-12-2025 - Mechanical Systems - The Annual [EN]-[IT]

image.png


~~~ La versione in italiano inizia subito dopo la versione in inglese ~~~


ENGLISH

07-12-2025 - Mechanical Systems - The Annual [EN]-[IT]
With this post, I would like to provide a brief introduction to the topic in question.
(lesson/article code: QE_08)

image.png

Image created with artificial intelligence, the software used is Microsoft Copilot

Introduction to Financial Mathematics
Financial mathematics is all the mathematics that revolves around financial statements; essentially, we manage money with formulas.
The three basic concepts are:
1-Compare alternatives over time
2-Calculate interest, installments, and debts
3-Evaluate investments

image.png

Annuity is one of the most classic calculations in financial mathematics.

Image created with artificial intelligence, the software used is Napkin.ai

The Annuity

image.png

Where:
Vn = future value (amount)
S = constant installment
i = is the interest rate per period
n = number of periods or installments.

The future value of an annuity S paid at the end of each year is given by the formula above.
When you pay S (a certain amount of money that is always the same) at the end of each year (a deferred annuity), the future value after n years is the capitalized sum of all payments.
Mathematically, this translates as follows:

image.png

Example
If, for example, we pay €1,000 (s) per year for 10 years (n) with an interest rate of 5% (i), we will have the following:

Data Collection
We collect the data we need to understand how much we will have after 10 years of Payments

image.png

Let's apply the formula we saw earlier, which I've reproduced below for convenience.

image.png

Now let's perform the substitutions with our data.

image.png

So, by running the calculations, we get the final result.

image.png

Result
We paid a total of €10,000 over 10 years, which earned €2,578 in interest. So, with the assumptions made, after 10 years, we will find that our €10,000 will have become €12,578.

Conclusions
By annuity, we mean a succession of equal payments, at regular intervals, on which a constant interest rate applies over time. Here in Italy, annuity is also called an annuity.
In mechanical systems, calculating annuity is crucial for investment purposes.

Question
Did you know that the idea of ​​an annuity, that is, a sum paid periodically in exchange for an initial capital, is very ancient?
Did you know that forms of annuity existed as early as Roman times?



ITALIAN

07-12-2025 - Impianti meccanici - L'annualità [EN]-[IT]
Con questo post vorrei dare una breve istruzione a riguardo dell’argomento citato in oggetto
(codice lezione/articolo: QE_08)

image.png

immagine creata con l’intelligenza artificiale, il software usato è Microsoft Copilot

Introduzione sulla matematica finanziaria
La matematica finanziaria è tutta la matematica che ruota attorno ai conti economici, sostanzialmente gestiamo i soldi con delle formule.
I tre concetti base sono:
1-Confrontare alternative nel tempo
2-Calcolare interessi, rate e debiti
3-Valutare investimenti

image.png

L'annualità è uno dei calcoli più classici del ramo della matematica finanziaria.

immagine creata con l’intelligenza artificiale, il software usato è Napkin.ai

L'annualità

image.png

Dove:
Vn = valore futuro (montante)
S = rata costante
i = è il tasso di interesse per periodo
n = numero di periodi o delle rate.

Il valore futuro di un annualità S versata alla fine di ogni anno e dato dalla formula qui sopra riportata.
Quando versi S (una certa somma di denaro sempre uguale) a fine di ogni anno (annualità posticipata), il valore futuro dopo n anni è la somma capitalizzata di tutti i versamenti.
Matematicamente questo si traduce come segue:

image.png

Esempio
Se per esempio versiamo 1000 € (s) all'anno per 10 anni (n) con un tasso di interesse del 5% (i) avremo quanto segue:

Raccolta dati
Raccogliamo i dati che ci servono per capire quanto avremo dopo 10 anni di versamenti

image.png

Applichiamo la formula vista prima che la riporto qui sotto per comodità

image.png

ora andiamo ad eseguire le sostituzioni con i nostri dati

image.png

quindi, eseguendo i calcoli avremo il risultato finale

image.png

Risultato
Abbiamo versato in tutto 10 000 € in 10 anni i quali hanno maturato 2.578 € di interessi. Quindi con le ipotesi fatte dopo 10 anni ci ritroveremo che i nostri 10.000 € saranno diventati 12.578 €

Conclusioni
Per annualità intendiamo una successione di pagamenti uguali, a intervalli di tempo regolari, su cui agisce un tasso di interesse costante nel tempo. Qua in Italia l'annualità è chiamata anche rendita.
Negli impianti meccanici calcolare l'annualità è importantissimo a livello di investimenti.

Domanda
Sapevate che l’idea di una rendita, cioè una somma pagata periodicamente in cambio di un capitale iniziale, è molto antica?
Sapevate che esistevano forme di rendite già all'epoca dei romani?

THE END

Sort:  

An annual salary... this makes me think about receiving my paycheck every year, ¿ can you imagine? I, for example, consider myself very disciplined, but trying to make the money last for everything until the annual payment date arrives doesn't seem very appealing, starting with the price increases, even for food.

Hi Lu, the annuity is used to economically model mortgages, depreciation, leasing, plant renovation funds, and industrial investments, taking into account the time value of money. When making long-term investments, i.e., 5 or 10 years, it's a good idea to take this into account. !BBH

I love mathematics; I understand it better than physics. Greetings, fellow number lover!

Hi Angeluxx, math is important. In this post, I talk about annuities, which are a sequence of equal payments or collections, made at regular intervals (usually annually), over a certain number of years.
Annuities are used to economically model mortgages and amortizations. So, mathematics plays a fundamental role in this area as well. !BEER


Hey @angeluxx, here is a little bit of BEER from @stefano.massari for you. Enjoy it!

Learn how to earn FREE BEER each day by staking your BEER.

Hi , you might want to check your witness votes , i saw your name voting for a witness that is no longer active ;)

Thanks for letting me know. It's actually been a while since I updated the witness ratings. I probably need to pay more attention to these HIVE dynamics. !BEER

you are not alone :) i've been making people aware of it since the hardfork took place .


Hey @stresskiller, here is a little bit of BEER from @stefano.massari for you. Enjoy it!

Learn how to earn FREE BEER each day by staking your BEER.


Hey @stresskiller, here is a little bit of BEER from @stefano.massari for you. Enjoy it!

Do you want to win SOME BEER together with your friends and draw the BEERKING.

Update: @stefano.massari, I paid out 0.144 HIVE and 0.000 HBD to reward 9 comments in this discussion thread.

I so much love mathematics and I am so sure that it is important that I continually love it more self

Hi Sammy, in this post I'm talking about annuity. It's central to economic analysis in mechanical systems: machine depreciation, financing payments, and cost-effectiveness analyses (NPV, IRR). Mathematics and annuity can also save certain investments. !CTP

Sicuramente legate agli scambi in natura (ancor più nelle società precedenti).
!PIZZA

🔮 The Third Eye has found you.

This post has been curated by @new-orden

Banner de Youtube Gamer Neon Azul.png

Congratulations @stefano.massari! You have completed the following achievement on the Hive blockchain And have been rewarded with New badge(s)

You have been a buzzy bee and published a post every day of the week.

You can view your badges on your board and compare yourself to others in the Ranking
If you no longer want to receive notifications, reply to this comment with the word STOP

Check out our last posts:

Our Hive Power Delegations to the November PUM Winners
Feedback from the December Hive Power Up Day

PIZZA!

$PIZZA slices delivered:
@pousinha(1/5) tipped @stefano.massari

Send $PIZZA tips in Discord via tip.cc!